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Motivation:

Improved Simulations of Coal Boilers

 We think we know a lot about
v’ Coal pyrolysis
v’ Char oxidation
v’ Ash transformation & deposition
v’ Soot formation
v’ Radiative heat transfer
v' NO, and SO, formation
v’ Turbulence
v’ Turbulence-chemistry interactions

Do we really know all of this information?
* What else is there to know?




Outline

1. Volatiles Composition
2. Soot formation
3. Char Oxidation




Approaches to Gas-Phase Chemistry in

Boiler Simulations

e Coal gas mixture fraction

— 2 coal gas mixture fractions
* Eddy dissipation

— Simple chemistry

— Checks for mixing-limited reaction
* Assume pyrolysis gas species

— lgnore turbulence?

— Large eddy simulations?

— Direct numerical simulations?
— Combine with GRI-Mech or another large mechanism?




Coal Gas Mixture Fraction

* Assumes all gases from coal have the same
elemental composition

— Char has same elemental composition as pyrolysis
gases

* Local chemical equilibrium in gas phase
* Generally used with PDF based on turbulent
mixing

* Smith, P.J.; Thomas H, F.; Smoot, L. D., Model for pulverized coal-fired reactors. Symposium (International) on Combustion 1981, 18, (1),
1285-1293.

* Brewster, B. S.; Baxter, L. L.; Smoot, L. D., Treatment of coal devolatilization in comprehensive combustion modeling. Energy & Fuels

1988, 2, (4), 362-370.
 Zhou, M.-m.; Parra-Alvarez, J. C.; Smith, P. J.; Isaac, B. J.; Thornock, J. N.; Wang, Y.; Smith, S. T., Large-eddy simulation of ash deposition in

a large-scale laboratory furnace. Proceedings of the Combustion Institute 2019, 37, (4), 4409-4418.




Two Coal Gas Mixture Fractions

* One mixture fraction for volatiles
* One mixture fraction for elements from char

e Each mixture fraction requires an elemental
composition
— Char assumed to be pure carbon
— No distinction made for light gases vs. tar

* Local chemical equilibrium in gas phase
* Generally used with PDF based on turbulent
mixing

* Flores, D. V.; Fletcher, T. H., The use of two mixture fractions to treat coal combustion products in turbulent pulverized-coal flames.
Combustion Science and Technology 2000, 150, (1-6), 1-26.




Species Assumed for Light Gas and Tar

* Light gas: -\o&
— CH, <
N
&

* Use detailed gas
 Tar: reaction mechanism,
o - such as GRI-Mech

— Ben- «H
) v@ W6 6) e Best usedin laminar
—A ®Q7 zne (C,H,) flow
- @élene (CcHsCHs5)
Q/‘o

~




Light Gas during Flash Pyrolysis
(Xu & Tomita, Fuel, 1987)

100

[

40

Tar and HCL

20

Product yield { %, daf )

Carbon content ( %, daf )

Figure 1  Effect of coal rank on yields of various products. (a) Gas including water, (tar + HCL) and char. (b} Oxygen-containing gases. (c) Methane
and hydrogen. (d) C2-C3 hydrocarbons. (¢) Hydrocarbon liquids: B, benzene; T, toluene; X, xylene; P, phenol; C, cresol. (f) Tar: O, Present values; O,
Literature values




COAL STRUCTURAL CHARACTERIZATION BY ADVANCED TECHNIQUES 107
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Py-FIMS

lignite | hva bituminous

MML f

" 300 500
MW ¢

* FIMS of tars from the 8
Argonne Premium coal
samples

- Lignite to Iv bituminous

e Similar profiles of the “dark”

area where most of the mass

hva bituminous

occurs
* Average MW of tar is ~350
h amu
Iv bituminous * Tails reach 800 amu

Simmleit et al., in Advances in Coal

Spectroscopy, Plenum, New York, pp.
Figure 28. Integrated py-FI mass spectra (50-750°C) of Beulah—-Zap (a, M, = 292), Wyodak
(b, U = 3.13), Illinois #6 (¢, M, = 368), Blind Canyon (d, M, 336), Lewiston—Stockton (e, 295-339 (1992)
M, , Pittsburgh (f, M, = 324), Upper Fremont (g, M, = 368), and Pocahontas #3 (h,
A\Vl = ‘W) Heating rate 100 K/m (Simmleit et al., 1992).
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Changes in Char during Pyrolysis
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Correlation of Elemental Composition

of Coal Tars and Chars

* Gathered sets of composition data that included:
— Maximum temperature
— Heating rate
— Residence time
— Parent coal composition
e Ultimate analysis (Elemental composition)
* Proximate analysis (volatiles, moisture, ash)
. Clorrelated vs. combinations of the above parameters,
plus:

— Chemical structure parameters (from 13C NMR or NMR
correlation)

e Total of 172 model forms attempted for correlation




Cross-Validation Process

Identify
experimental
data

e L e

Identify

Divide data
into groups

validation
metrics

Cross validation:

1. Divide data into 10 separate groups

2. Use 9 of 10 groups to fit data

3. Use the unused group for independent evaluation

4. Repeat steps 2 & 3, rotating which is the independent group




Aromaticity Correlation
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Best Coal Aromaticity Correlation

I 2 2
fa = G T CZCcoal T C3Ccoal + C4Hcoal T C5Hcoal +
2 2
C60coai T €700a1 T CsVastm + CoVisTu




Tar Correlations
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Tar Correlations

(C& Hin tar)

Cear _ o hooT + . + cet
— *1 2tgas,max 3 4 5tres
Ccoal CSTgaS,max + C4Tgas,max
1 1 1
+ + + C9Croar +
2 4 9%coal
Colres T Crlyes 1+ C8Vnorm 1OCcoal + C1lccoal
Htar
H C1 + CZTgaS max + C3tres + C4tres + Cstres +
coal

3 2
C6Vnorm + C7Vnorm + C8Vnorm + C9M5,Genetti + ClOMS,Genetti

Where

Viorm = Vmeas/Veo
Ms Genetti = MW of a side chain in the parent coal, from NMR correlation




Correlation of Coal
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Correlations

(C & H in tar)
Cchar . :
- 2
=C T CZTgas,max + C3T as,max + C4T4as max +
Ccoal Y Y
1 1
C5 res + C6tres + C7tres + C8tres + Co eXp(VTlOT‘m) + ClOCCO(ll
1
+ C11Ccoal
Hchar

. C3 C7 C11
=C t CZTgaS max T C4tres t C6Vnorm T C8Hcoal + ClO]{élSTM

H coal




Application to Simulations

1. Estimate heating rate and gas temperature
conditions

2. Select coal type and get coal composition data

3. Use correlations to get elemental composition
of tar & char

e gas composition by difference
4. Estimate heat of formation for tar, char, & gas

5. Use with equilibrium code & assumed shape
PDF method

* Possible to have 3 coal gas mixture fractions?
e Compatible with soot model?




Outline

2. Soot formation




Why Soot?

* Particles heavily impact radiative heat transfer
* Changes near-burner flame temperature and hence

chemistry
* Health and environmental impacts

Gaseous Fuels Solid Fuels
* Hydrocarbons form acetylene-like radicals e Coal gives off tar during primary pyrolysis
* Acetylene radicals form benzene, PAHs e Taris primary soot precursor

e Soot precursors are PAHs e Only small influence of acetylene mechanism




Previous Soot Model

(Brown & Fletcher, E&F 1998)

F I [TELTTTTTTTT T I T I
2000 [ , \.....__.
1900 f PPN “ A
é [ ___.-' O \' "-\ \D g ‘1..\_ ........:--..""
o £ \ N ~ A i, Y
5 [ / Y y O
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5] | — Case 1 ey
) [ Case 2
o L |- - Case3
= 1700 [ |---- Case 4
o il Case 5
[ §]----- Case 6
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L1p il 111 | | ' | |
0.2 0.4 0.6 0.8

Distance From Wall (m)

Predicted and measured gas temperatures in the
FPTF at 144.8 cm above the inlet.
(from Brown, 1997)

CPD model to predict tar yield

Empirical model for
tar — soot

Soot growth and oxidation
modeled

Near burner flame
temperature decreased by
300 K when soot was modeled




Detailed soot model

(Josephson & Lignell, 2018)

Aggregation
r Soot Aggregates
Growth
Light Gases

Devolatilization

Nucleatlon Oxidation,
Gasification

Light Gases

Growth

Cracking

Key aspect: formation from tar
Tar acts as a nucleation source, and is “closer” to soot
Tar formed from coal devolatilization
Consumed by oxidation, gasification, cracking, deposition, soot nucleation
Soot formed from tar nucleation, deposition, light gas nucleation, growth

Consumed by oxidation, gasification, (coagulation, aggregation)



Detailed soot model

Precursors

Sectional model
Transport 9 sections (5 in Arches)

Fixed bins
CPD model output

tar yield
MW distribution

Coagulation (FM) — soot

PAH Particle Size Distribution
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Soot

MOMIC (moment method)
Transport 6 moments (5 in Arches)

Aggregation as in Balthasar & Frenklach
(2005)

Mk<d> transported

Defines a shape descriptor

_ log u(a ‘ 2/3 1
log 1
Tar nucleation
Tar deposition (collisional growth)
HACA growth (C2H2)

02+0H oxidation
CO2+H20 gasification



Tar cracking model

Tar cracking mechanism is important for \ Precursor \
accurate modeling.

Tar molecules include aliphatic components
and heteroatoms Phenol — Napthalene Toluene
Model based on that by Marias et al. Fuel
Process. Technol. 149:139-152 (2016). | l
Tars taken as consisting of 4 type fractions xe [ N
as a surrogate:
Phenol, toluene, naphthalene, benzene
Components react to others, or to gas phase
Rates for each tar section are computed Reaction Rates
) . C¢HgO —> CO + 0.4CyoHg + 0.15CgHg +0.1CH, +0.75H, Ry = k;[CgHgO]
from xt, reaction rates, and fraction of MW ki = 1.00E7 exp (=}9%)
C¢HgO + 3H,0 — 2CO + CO, + 3CHy4 Ry = ](2[C6H60]
cracked to gas kz = 1.00E8 exp (LE5)
C]OHg +4H20 e CsH(—; +4CO+5H2 R3 = k3[C10H8][H2]O4
Type fractions xt taken as constant, et s oo s CHL fo — 1S8E1Za (C3455)
ks = 1.04E12 i
precomputed for each fuel type/system e 4510 50 1 61, + Chy v _kS[chbep( )
ks = 4.40E8 exp (=325




Validation—Coal

Char-Leg Filter e 1650 Kexp A 1800 Kexp * 1900 K exp
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Soot model compared with Ma’s data



Validation—Biomass

(soot yields)

Trubetskaya et al., Applied Energy, 171, 2016
Fast pyrolysis drop tube reactor
Two temperatures: 1250, 1400 °C

Precursors from CPD-bio

O

&)
— ‘ 10 Pinewood Beechwood Wheat Straw
]

Biomass feeder

Flow meters

[
Flat flame
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I : ! i i !
Y
A A

|
|
(b}-----‘f ----- =(b) X PN
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B Experiment B8 Simulation
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tube | X X X
0 — o ] s Good agreement with measured soot yield for biomass pyrolysis!
ar (CHa | Air| | N . L.
bin 2 True prediction — no tunable parameters!

Gas cylinders

Trubetskaya et al., Applied Energy, 171, 2016



Validation—Biomass

(MW distributions)
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Reasonable agreement with soot size distribution!



Reduced Soot Model

Detailed model reduced for computational
efficiency

5-9 tar sections — 1 section
Tansport Nt (#/m3)

5-6 soot moments — 2 moments
Transport Ns, Ys

Assume spherical particles

No “d” moment: M<d>

Most chemistry is the same
Correlate tar cracking type fractions xt
Sooting potential model



Sooting Potential Model

CPD run many times varying input parameters

Tar Mass Yield Predictions

T: 800 < T (K) < 3000 : Jield

P:0.1<P (atm) <100, = n

O:C ratio: 0.01 < 0:C < 0.35 3 :

H:Cratio: 0.3 <H:C< 1.1

Volatiles: 2 < %Vol < 80 % s
Correlation: tar yield and tar MW CPD

-124.2 +35.7P + 93.50¢ — 223.90% + 284.8Hc — 107.3H}
+5.48V + 0.014V? — 58 2PCy — 0.521PV — 5.32HcV

Ytar = E
T 1303.8 + 52.4P + 1.55E30¢ — 2.A46E30% + 656.9H¢ — 266.3H2 + 15.9V LE
+0.025V% — 90.0PH¢ — 462.50¢cHc + 4.800¢V — 17.8HcV S
3.12E5 + 16.4T, + 4.34E50¢ — 8.48E5H, + 6.38E5H?
—361.3V — 0.221T,V — 6.39E50cHc + 1.91E3HcV
Migr = ~ 20
“"753.6 + 0.042T, + 83.90¢ — 1.77E3Hc + 1.20E3HZ + 5.09E-3T,P I ceD " O

— 0.024T,He — 5.27E-4T,V + 0.513PV — 361.00cH¢ + 3.83HcV



Validation—flat flame burner
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Arches simulation—OFC

" soothy

Detailed Reduced Detailed Reduced




Outline

3. Char Oxidation




Wanted:

Coal General Model of Char Oxidation

* Char properties are affected by many factors:
— Parent coal properties
— Size
— Preparation conditions

* Heating rate

* Residence time

* Pressure

* Peak temperature

* Oxidizing vs reducing conditions




Comprehensive Char

Oxidation/Gasification Models

 CBK (Hurt, et al.)
— Intrinsic Char-0, kinetics
— Thiele modulus for pore diffusion
— Swelling model
— Mode of burning and other parameters
— Simple annealing model

 CBK-G (Niksa et al.)

— Similar to CBK, except for gasification by CO,, H,0, &
H,

 CCK (Holland & Fletcher)

— Combined CBK and CBK-G
— Improved annealing and swelling models




Sensitivity Analysis on CCK for Oxy-fuel
Conditions

» Determine which Parameter Importance
submodels/parameters are most

important E, (annealing act. energy)

» Not including intrinsic rates ,
n, (reaction order)

» Global analysis varying all
parameters simultaneously testing d/d, (swelling)
for both linear and non-linear
sensitivity a (mode of burning)*

» 27 parameters, 4 burn-out quartiles,
4 coals, 3 gas conditions, 2
quantities of interest, and 2 types of
sensitivity analysis =5,000 measures
of sensitivity extracted from 120,000 FRTFSEITERIS
computational experiments

dgr.in (ash grain size)

og, (distribution of E,)

olland and Fletcher, 2016)



Possible Solution:

Annealing Model (CBK)

= f[precursor,T (t)] = Aofan.\

Annealing factor

In(4,) = 10.96 — 0.07136 * C

dN;
d - Adexp( Ed l/(RT )) N \ Distribution

=) fi= ) Ni/Nig




Annealing during Pyrolysis

vs Post-pyrolysis

During Pyrolysis Post-pyrolysis
* Coal type * Mode of burning
— Chemical structure — Constant diameter vs constant
— Pyrolysis yields density
* Heating rate * Residence time
— Pyrolysis yields — Changes in aromatic structure
— Swelling * Changes with extent of
— Pore size conversion
— Ash distribution — Pore sizes
 Peak temperature — Ash layer
— Pyrolysis yields — Distribution of reactivity

— Ash layer porosity * Most reactive stuff burns first




Annealing Model:
Holland Extension

» The distributed activation energy is bimodal and

irregular
» The distribution (not just the reaction rate) Parameter Value
depends on ko 1.398*10'% 5!

0.356 In(kcal/mol)
3.65* 10 In(kcal/mol)
1.531 In(kcal/mol)
0.679 In(kcal/mol)

» coal particle heating rate (HR),

» peak temperature (T,), and

oo o W

» chemical structure (py)

» O, char conversion may be impacted differently by
annealing than CO, and H,0 char conversion

df; —Ey 1
Zi—_A, % ( annea ) % f
dt d * exp RT fi

2
1 1 (M Eagnear ATH
PDF(E4, ... i) =EA—exp=.€—E< ( _— )> )

g
anneal

o
-
(&)}

post-pyrolysis

u=a*p0+b*Tpeak +c

active site fraction
o
o o
'4)} —

d B .
1 pyrolysis
Po
po*ko 4 0 :
d = o’ for HR = 10 0 50 100 150
A . bin number
— __Po*%0 4 Irregular distributed activation ener
Ad In{HR +2.7) for HR < 10 g gy
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Annealing Model:
Results by Holland & Fletcher

o Hurt et al. Model
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* Extended Model

10° 102
Measured Relative Reactivity

Hurt et al. Model Extended Model
Model Mean Minimum Maximum Mean Minimum Maximum

Quantification
Sum Squared 1.45x10°" N/A N/A 2.43x10%* N/A N/A
Error
Error Factor: 6.08 1.00 51.97 2.24 1.00 9.96
All Points
Error Factor: 17.28 7.00 51.97 4.44 2.30 9.96
Least

Successful

Quartile
Error Factor: 1.13 1.00 1.25 1.10 1.00 1.20
Most Successful
quartile

Error Factor: 2.78 1.25 6.50 1.63 1.21 2.27
Central

Quartiles

|

\

Error factor reduced from ~6 to ~2 using improved annealing model, includi

effects of:
» Coal type
« Heating rate
* Peak temperature




Conclusions

* Hope for better chemistry in coal
combustion/gasification simulations

— Correlation for elemental composition of tar & char
— Not CH, and Benzene

* Better treatment of tar leads to improved
simulation of soot
— Generalized soot model
— Improved local temperature (T;) predictions
— Improved T, will lead to improved NO, calculations




Conclusions (cont.)

* Hope for coal-general char conversion model

— Reactivity affected by:
e Char formation environment
* Residence time during char conversion
e Extent of char conversion

— Annealing model used to treat pyrolysis & post-
pyrolysis effects

— Improved swelling model based on heating rate &
coal type

— Still work to do
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OFC Validation—Experiments




OFC Validation—Experiments

Temperature fv
Temperature (K) Soot fv (ppv)
Simulation Experiment Simulation Experiment
Pos 1 1208 1225 Pos 1 2 133
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